Approximation of a weighted Hilbert transform by using perturbed Laguerre zeros

نویسنده

  • Donatella Occorsio
چکیده

In the present paper is proposed a numerical method to approximate Hilbert transforms of the type

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bilinear Hilbert transform acting on Hermite and Laguerre functions

We obtain several formulas for the action of the bilinear Hilbert transform on pairs of Hermite and Laguerre functions. The result can be expressed as a linear combination of products of Hermite or Laguerre functions.

متن کامل

Approximation of the Hilbert Transform on the real line using Hermite zeros

The authors study the Hilbert Transform on the real line. They introduce some polynomial approximations and some algorithms for its numerical evaluation. Error estimates in uniform norm are given.

متن کامل

Orthogonality of Jacobi and Laguerre polynomials for general parameters via the Hadamard finite part

Orthogonality of the Jacobi and of Laguerre polynomials, P (α,β) n and L (α) n , is established for α, β ∈ C \ Z−, α + β 6= −2,−3, . . . using the Hadamard finite part of the integral which gives their orthogonality in the classical cases. Riemann-Hilbert problems that these polynomials satisfy are found. The results are formally similar to the ones in the classical case (when Rα,Rβ > −1).

متن کامل

Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I

In this paper, we study a certain linear statistics of the unitary Laguerre ensembles, motivated in part by a form factor calculation of an integrable quantum field theory at finite temperature. It turns out that the orthogonal polynomials associated with this linear statistics has the weight w(x) = w(x, s) := xee, 0 ≤ x < ∞, α > 0, s > 0, namely the usual Laguerre weight ”perturbed” by an infi...

متن کامل

A Hilbert transform representation of the error in Lagrange interpolation

Let Ln [f ] denote the Lagrange interpolation polynomial to a function f at the zeros of a polynomial Pn with distinct real zeros. We show that f − Ln [f ] = −PnHe [ H [f ] Pn ] , where H denotes the Hilbert transform, and He is an extension of it. We use this to prove convergence of Lagrange interpolation for certain functions analytic in (−1, 1) that are not assumed analytic in any ellipse wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016